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When there are two globally conserved quan-
tities in a turbulent fluid, the dynamics of one
can be influenced significantly by the dynamics
of the other. This is a familar feature in two-
dimensional turbulence where conservation both
of kinetic energy and of a quantity known as the
enstrophy forces a net kinetic energy transfer to-
wards large scales and a net enstrophy transfer
towards the small scales. In three-dimensional
turbulence, both kinetic energy and helicity are
quadratic invariants. Helicity is the measure of
parity-breaking (helical or twisting) motions in
the fluid. The kinetic energy transfer processes
have been thought to dominate the dynamics at
all scales with the helicity being carried along
passively. We showed that helicity possesses a
timescale for transfer which can affect the energy
transfer rate. Consequently, our understanding
of two key features of turbulent fluid dynamics
needs to be revised.

The only constraint between helicity and ki-
netic energy in a given wavenumber k is given by
the Schwartz inequality for the relative helicity :

H (k) =
H(k)

2kE(k)
≤ 1

where H(k) is the helicity density and E(k) the ki-
netic energy density in wavenumber k. This rela-
tion is the main argument used to justify neglect-
ing helicity. The relation seems to imply that for
sufficiently high wavenumber the relative helic-
ity H (k) must go to zero and hence the helicity
effects must become vanishingly small. This is
somewhat misleading as we describe below.

Denote the kinetic energy transfer timescale,
that is, the time taken for energy to be fluxed
through wavenumber k, by τE and the correspond-
ing timescale for helicity by τH . Using simple
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The energy spectrum as a function of wavenum-
ber as computed from statistically steady turbu-
lent flow in a periodic cube with 1024 grid points
to a side. The solid black curve is the spectrum
compensated by k5/3. The region 7 < k < 20 in-
dicates the nominal range over which the Kol-
mogorov k−5/3 scaling holds. The dashed blue
line is the same spectrum compensated by k−4/3.
The flat regime now occurs for 20 < k < 70, show-
ing that a transition between the energy timescale
dominated dynamics and the helicity timescale
dominated dynamics has a signature in the energy
spectrum.

arguments based on locality of the transfer pro-
cesses in wavenumber [1] one can define these
timescales and deduce that their ratio is:

τE

τH
≤

( H(k)
2kE(k)

)1/2
= H (k)1/2

That is, the ratio of the relevant timescales gov-
erning the dynamics falls of slower than the rela-
tive helicity H (k). So, while the energy transfer
is always the faster, and hence the more dominant,
timescale, we cannot rule out the fact the helicity
timescale may not be that much slower and could
in fact affect the overall dynamics.

The first consequence of this study of
timescales of the two quadratic invariants is that
a k−4/3 scaling of the energy spectrum E(k) be-
comes possible if the helicity transfer timescale is
not too slow. This is a fundamental revision of the
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decades old Kolmogorov benchmark that the en-
ergy spectrum must scale as k−5/3 for highly tur-
bulent flows. The figure shows the energy spec-
trum calculated from data generated by direct nu-
merical simulation of the Navier-Stokes equation
with random helical forcing in a periodic box with
10243 grid points to a side. In order to identify
the two possible scaling regimes the spectrum is
compensated by k5/3 (solid black curve) and by
k4/3 (dashed blue curve). In the former, compen-
sation by k5/3 reveals a flat regime 6 < k < 20 and
followed by the well-known ‘bottleneck’ feature
often observed in turbulence spectrum measure-
ments. There is an apparent ’pile-up’ of energy
in the wavenumbers past a nominal k−5/3 scaling
regime. Remarkably, the bottleneck disappears
when the spectrum is compensated by k−4/3 sug-
gesting that there is a reasonable explanation for
the bottleneck – that the energy is slowed down
by helicity and hence appears to ’pile-up’ in the
large wavenumbers before dissipating.

A further consqeuence of a timescale compara-
rison is that we deduced a new dissipation scale
for both energy and helicity which is larger than
the dissipation scale prescribed by Kolmogorov.
Traditional computational requirements for nu-
merical simulation of turbulence, have always
aimed to resolve the Kolmogorov energy dissipa-
tion scale. The prediction that a larger, helicity
dependent dissipation scale exists requires further
verification but if true, implies that we only need
to resolve something significantly larger than the
Kolmogorov scale. This implies a potentially sig-
nificant saving in resources when very large flows
need to be numerically computed.

This report is a summary of work published in
[2].
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